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ABSTRACT

The product of convective available potential energy (CAPE) and precip-

itation rate has previously been used as a proxy for cloud-to-ground (CG)

lightning flash counts in climate change applications. Here the ability of this

proxy, denoted CP, to represent the climatology and variability of CG light-

ning flash counts over the contiguous U.S. (CONUS) during the period 2003–

2016 is assessed. CP values computed using the North American Regional

Reanalysis are compared with negative and positive polarity CG flash counts

from the National Lightning Detection Network. Overall, the proxy performs

better on shorter time scales (daily and monthly) than on longer time scales

(annual and semi-annual). Proxy performance tends to be worse during the

warm season (May–October), when most lightning occurs, and better during

the cool season (November–April). The correlation of annually accumulated

CONUS CP with CG flash counts is not statistically significant because of

poor warm-season performance. Cool season negative CG flash counts are

well-correlated with CONUS CP values. Positive CG flash counts (∼7% of

all CG flashes) are well correlated with annual values of CONUS CP. The

relatively strong relations between CP and CG flash counts in some regions

and times of the year at daily resolution provide a benchmark for more com-

plex proxies and suggest that proxy-based extended- and long-range predic-

tion of lightning activity may be feasible to the extent that precipitation rate

and CAPE can be predicted.
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1. Introduction37

Lightning flash rate is a defining characteristic of thunderstorm evolution. Cloud-to-ground38

(CG) lightning impacts societies through deaths and injuries, property damage, wildfires, and air39

quality (Koshak et al. 2015). The importance of CG lightning is a motivation for studying how its40

characteristics vary under climate change and variability. The relation of lightning with climate,41

whether in the form of interannual variability or long-term trends, is difficult to infer directly42

from the observational record because high-quality, spatially complete lightning datasets are often43

relatively short. Moreover, observational data can at best provide circumstantial information about44

expected lightning characteristics in climates that differ from the one in which observations are45

collected, be they future climates or ones in other regions.46

Lightning activity in general depends on the dynamics and microphysics of convective clouds,47

and this dependence has been modeled with varying levels of detail and complexity. Lightning48

occurrence and flash rates can be simulated with considerable fidelity and realism by combining49

electrification and lightning parameterizations with models of atmospheric dynamics and micro-50

physics (Mansell et al. 2005; Kuhlman et al. 2006; Fierro et al. 2013). Lightning rates also have51

been related in a more empirical but effective manner to cloud properties, microphysical param-52

eters, and updrafts generated by convection permitting models (McCaul et al. 2009; Yair et al.53

2010; Lynn et al. 2012). Alternatively, lightning flash densities can be diagnosed from the output54

of convective parameterization schemes in models that do not explicitly resolve clouds (Allen and55

Pickering 2002; Lopez 2016). Stolz et al. (2017) parameterized storm-scale total lightning density56

using environmental variables from reanalysis and aerosol data.57

However, detailed cloud and microphysical properties are not always readily available from58

reanalysis, seasonal forecasts, or climate change projections, and are themselves uncertain. There-59
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fore, simple proxies for lightning that depend on a few, easily available quantities may provide60

utility for climate variability and projection applications. Romps et al. (2014) proposed the prod-61

uct of convective available potential energy (CAPE) and precipitation rate as a proxy for the num-62

ber of CG lightning flashes. The application of this proxy to climate change projections predicts63

a 50% increase in United States lightning strokes over the 21st century, which is roughly consis-64

tent with results for total lightning based on cloud-top height and upward cloud ice flux (Finney65

et al. 2018). The projected increase in the Romps lightning proxy is driven by robust increases in66

CAPE, and upward trends in CAPE have been noted in other parts of the world (Murugavel et al.67

2012). An attractive feature of the Romps proxy is that there is some theoretical understanding of68

how its constituents are modulated by short-term climate variability (e.g., ENSO; Ropelewski and69

Halpert 1987; L’Heureux et al. 2015; Allen et al. 2015b) and long-term change (Held and Soden70

2006; Seeley and Romps 2016). Also, its ingredients are standard outputs of many seasonal and71

subseasonal dynamical forecasting systems and could be used to make extended-range forecasts72

of lightning activity (Dowdy 2016; Muñoz et al. 2016). Analogous approaches have been used to73

relate tornado and hail activity with nearby meteorological quantities at monthly and daily reso-74

lution (Tippett et al. 2012; Allen et al. 2015a; Tippett et al. 2016; Westermayer et al. 2017). A75

caveat of empirical proxy-based approaches is that good performance in the current climate does76

not guarantee good performance in future climates (Stainforth et al. 2007; Camargo et al. 2014).77

The goal of this work is to assess the extent to which the ingredients of the Romps proxy, pre-78

cipitation rate and CAPE, capture recent variability in CG flash counts over the contiguous United79

States (CONUS). Of course, assessing the performance of the proxy in capturing observed CG80

flash counts is a necessary, but not sufficient requirement for its use in applications such as climate81

projections and subseasonal to seasonal (S2S) predictions, which is our long-term goal. Impor-82

tantly, good performance with reanalysis in no way guarantees comparable performance in climate83
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projection or S2S forecast applications. On the other hand, poor performance of the proxy in re-84

analysis would provide useful indications of its limitations. Also, the choice of the Romps proxy85

is motivated by the availability of CAPE and precipitation rate in forecast and reforecast datasets86

such as those of the NOAA Climate Forecast System, version 2 (Saha et al. 2014; Lepore et al.87

2018), the S2S Prediction Project Database (Vitart et al. 2016), and the Subseasonal Experiment88

(SubX) database (Pegion et al. 2018). However, the CAPE values that are available from forecast89

models can be sensitive to the choice of parcel and use of the virtual temperature correction.90

Romps et al. (2014) showed a strong association between daily counts of CONUS CG flashes91

and the product of CONUS-averages of precipitation rate and CAPE during a single year, 2011.92

Here we use a longer period (14 years) to see what information is provided by additional years93

of data regarding seasonal variations in the strength of the association and about the ability of the94

proxy to capture interannual variability in CG flash counts. Romps et al. (2014) used CAPE cal-95

culated from radiosonde data and a NOAA River Forecast Centers precipitation product based on96

rain-gauge and radar data. Here we test the quality of the association between CG flash counts and97

the CAPE-precipitation product when reanalysis products are used instead of solely observation-98

based ones. Knowing whether reanalysis products are sufficiently realistic for this application is99

important because it helps to judge whether such a climate proxy computed from numerical model100

outputs can be used to forecast or project future CG lightning activity. Furthermore, the use of spa-101

tially complete reanalysis data allows us to form the product of collocated CAPE and precipitation102

rate (denoted CP) on a spatially resolved grid and to examine regional features of the association103

of the CAPE-precipitation product with CG lightning flash counts. A similar study of lightning104

over Bangladesh, where lightning is an especially dangerous hazard Dewan et al. (2017), found105

that the CP was more strongly associated with total lightning flash counts during the pre-monsoon106

season than during the monsoon season (Dewan et al. 2018).107
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2. Data and methods108

a. Data109

We use total precipitation rate (mm d−1) and 0-180 hPa most unstable CAPE (J kg−1) data from110

the North American Regional Reanalysis (NARR; Mesinger and Coauthors 2006). The most un-111

stable parcel is found by dividing the 0-180 hPa layer into six 30-hPa-deep layers and selecting the112

one with the largest equivalent potential temperature (no virtual temperature correction). NARR113

data are provided at 3-hourly resolution. The precipitation rate is based on a 3-hour accumulation.114

CAPE is the instantaneous value at the start of the 3-hour period. The data are averaged from their115

32-km native grid spacing to a 1◦×1◦ latitude-longitude grid. We choose the 1-degree grid spac-116

ing to match that of CFSv2 and SubX data because our long-term goal is S2S prediction. NARR117

precipitation estimates show some advantage over ones from other reanalysis products, especially118

global reanalysis, likely due to the use of precipitation observations which the NARR assimilates119

as latent heating profiles (Bukovsky and Karoly 2007; Cui et al. 2017).120

Cloud-to-ground (CG) lightning flash counts come from the National Lightning Detection Net-121

work (NLDN; Cummins and Murphy 2009) and are summed on the same 1◦× 1◦ grid at daily122

(UTC) resolution. CG detection efficiency is 90%–95% for CG flashes. Only CONUS land points123

are used in our analysis, although both NARR and NLDN data extend over ocean and into Mexico124

and Canada. We use NLDN data covering the period 2003–2016 (5114 days) during which the125

NLDN network is complete and stable (Koshak et al. 2015). There are 9 days with missing NLDN126

data: 31/12/03, 08/02/04, 08/02/06, 16/01/07, 06/02/07, 18/12/07, 05/12/08, 17/01/09, 16/01/13,127

and those days are excluded from calculations. A change in the NLDN Total Lightning Processor128

(TLP) on 18/09/15 may be responsible for a substantial increase noted in the number of positive129

CG flashes reported during 2016 (Nag et al. 2016).130
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Negative and positive (≥ 15 kiloampere; kA) polarity CG lightning flash counts are analyzed131

separately to examine whether the proxy performance differs for positive and negative flash counts.132

Differing proxy performance might be expected since environment, at least at the mesoscale, can133

affect storm structure and CG flash polarity (Carey and Buffalo 2007). The total of positive and134

negative CG flashes were analyzed but give results that are very similar to those for negative CG135

flash counts. The threshold of 15 kA for positive polarity flashes accounts for the tendency of136

the NLDN to misclassify cloud pulses as low-amplitude, positive CG strokes (Biagi et al. 2007;137

Cummins and Murphy 2009). The new NLDN TLP removes the 15 kA peak current limit for138

positive CG flashes. Therefore, to maintain more consistency, we apply our own 15 kA filter139

to the positive CG flashes in 2015 and 2016. As a consequence, the numbers of positive CG140

flashes analyzed here for 2015 and 2016 are less than those in the unfiltered NLDN data sets. The141

majority (93%) of CONUS CG flashes have negative polarity during the period 2003–2016. The142

ratio of negative polarity CG flashes to total CG flashes shows substantial spatial variations (Fig.143

1), with ratios above 95% on the Eastern Seaboard, below 85% in the Upper Midwest, and with144

the lowest values in very narrow band along the West Coast, consistent with the patterns found145

in individual years (Koshak et al. 2015). Positive polarity CG flashes have been associated with146

severe thunderstorms in the Midwest (tornadoes, hail, and damaging wind; e.g., MacGorman and147

Burgess 1994; Carey and Rutledge 2003). However, other regions with frequent severe weather do148

not show especially elevated percentages of positive CG flashes. Conversely, the high percentages149

of positive CG flashes along the West Coast occur where severe weather is infrequent (Zajac and150

Rutledge 2001; Koshak et al. 2015; Medici et al. 2017).151

Here we use the product of collocated 3-hourly values of CAPE and precipitation rate as a proxy152

for the number of CG flashes that occur during those three hours in the corresponding grid cells,153

and we denote this quantity as CP. Using a proxy based on collocated values allows us to compare154
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it with CG flash counts on a regional as well as CONUS-wide basis. Three-hourly CP values are155

summed over time to form daily, monthly, seasonal, and annual values; they are summed over156

space to form regional CONUS values. CP values are scaled to facilitate their comparison with157

CG flash counts. The scaling factor is computed so that the area-weighted sum of CP values over158

the period 2003–2016 matches the number of CONUS flashes, depending on polarity. In other159

words,160

scaling factor =
area-weighted sum (CP)

sum (CG flashes)
.

The scaling factor for negative polarity CG flashes is 64.17 flashes / J kg−1 mm day−1 and 4.79161

flashes / J kg−1 mm day−1 for positive polarity CG flashes. On the 1◦×1◦ grid,162

CP (scaled to negative CG flash counts) = 64.17×CAPE×precipitation× cosφ ,

and163

CP (scaled to positive CG flash counts) = 4.79×CAPE×precipitation× cosφ ,

where φ is latitude in radians, and cosφ accounts for the varying grid cell area. The same scaling164

factor is used in all months and locations. All comparisons between CP and CG flashes use scaled165

CP, and we drop the word scaled hereafter.166

b. Methods167

We assess regional behavior by spatially aggregating CP and CG flashes at the level of NOAA168

climate regions (Karl and Koss 1984). The states in each region are listed in Supplemental Table169

S1. The spatial structure of CP and CG flashes are compared using pattern correlations computed170

for the points east of 105◦W with the map mean removed (Wilks 2011). The pattern correla-171

tions are computed using points east of 105◦W to focus on the region where the vast majority of172

CG flashes are recorded and to avoid giving credit for simply matching the east-west gradient.173
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The temporal association between CP and CG flashes is measured using correlation and mean-174

squared error (MSE), where the error is the difference of CP and the number of CG flashes. MSE175

is normalized by the CG flash variance (at the same temporal resolution) to allow comparison176

of error levels for regions and seasons with disparate levels of CG flash activity. In addition to177

daily, monthly, and annual aggregation, we also look at totals for six-month warm (May–October)178

and cool (November–April) seasons, with the cool season consisting of the 13 complete seasons179

2003/2004–2015/2016 for which data are available. For interannual correlations (14 years), the180

critical correlation value at the 5% significance level for rejecting the null hypothesis of no corre-181

lation is about 0.46 for a one-tailed test and 0.53 for a two-tailed test.182

3. Results183

a. Regional scaling of CP and CG flashes184

Although CP is scaled to match the CONUS total of CG flashes, the ratio of CG flashes to CP185

shows distinct regional variations (Fig. 2), which presumably reflect the differing frequency of186

rainfall processes and cloud properties that are not accounted for in CP. Also, the spatial variations187

in the ratio of CG flashes to CP may indicate a role for additional thermodynamic factors such as188

wet-bulb temperature (Koshak et al. 2015), mid-level humidity (Westermayer et al. 2017), warm189

cloud depth (Stolz et al. 2017), or equilibrium level temperature (Bright et al. 2004; Taszarek et al.190

2017). Deficiencies in reanalysis CAPE might also be a factor (Gensini et al. 2014; King and191

Kennedy 2019). Values of the ratio of negative CG flashes to CP are slightly above one in the192

Northeast, where aerosol concentrations are relatively large (van Donkelaar et al. 2015). The ratio193

of negative flashes to CP is near one east of the Rockies, and substantially greater than one west194

of 105◦W, until along the West Coast where the ratio is much less than one. The picture for pos-195
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itive CG flashes is similar, but without elevated ratio values in the Northeast and with a stronger196

gradient from values greater than one in the Northern Rockies and Upper Midwest to values less197

than one in the Southeast. The single scaling factor applied to CP for each polarity matches the198

behavior in the East because 91.0% of the negative polarity CG flashes and 93.4% of the positive199

polarity CG flashes occur east of 105◦W. Previous studies have noted that ice-based precipita-200

tion processes are dominant in the arid Southwestern US, and the ratio of convective rainfall to201

lightning (rainfall yield) is relatively low there (Petersen and Rutledge 1998). Mülmenstädt et al.202

(2015) found that ice-phase clouds were more frequent in the western half of the CONUS and203

that liquid-phase clouds were more frequent east of the Rockies. Lower lifted condensation level204

heights in the East (not shown) are suggestive of lower cloud bases and conditions favoring warm205

rain processes with greater precipitation efficiency. Fuchs et al. (2015) compared total lightning206

flash rates in Colorado, Oklahoma, Alabama, and the District of Columbia, and hypothesized that207

storms with high cloud base heights or shallow warm cloud depths have less warm-phase precipi-208

tation and more mixed-phase precipitation and lightning. The low ratio of CG flash count to CP in209

a narrow band along the West Coast may be related to onshore flow of maritime air masses with210

fewer cloud condensation nuclei or dynamically weaker convection that develops offshore and at211

coastal boundaries (Zipser 1994; Xu et al. 2012; Holle et al. 2016). Despite some regional scaling212

deficiencies, CP matches CG flash counts relatively well in the areas where the vast majority of213

CONUS CG lightning occurs.214

b. Daily associations of CONUS totals215

We first consider the association of daily CONUS CG flash counts with CAPE alone. The216

correlation of daily CONUS CG flash counts with CONUS-averaged CAPE from NARR over217

the period 2003–2016 is larger (values of 0.86 and 0.8, respectively, for counts of negative and218
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positive CG flashes; Fig. 3) than that found by Romps et al. (2014) for CAPE computed from219

radiosonde data for the single year 2011 (r = 0.72). In fact, there is some expectation that reanal-220

ysis CAPE might be more representative of large-scale features than would be CAPE computed221

from radiosonde data, since radiosonde data contain small-scale variability that may not be rep-222

resentative of the large-scale nearby environment. Lepore et al. (2016) found a stronger relation223

between gauge-measured rainfall extremes and CAPE from reanalysis than with CAPE based on224

nearby radiosonde measurements. Also, the use of time-averaged reanalysis CAPE and precipi-225

tation possibly mitigates the difficulty of using observed collocated CAPE and precipitation that226

is caused by CAPE being released by convection (Romps et al. 2014). On the other hand, daily227

CONUS-averaged precipitation from NARR shows a slightly weaker relation with CG flash counts228

(correlation values of 0.36 and 0.43 for negative and positive CG flash counts, respectively; Fig. 3)229

than the r = 0.54 reported by Romps et al. (2014) using a NOAA River Forecast Centers precipita-230

tion product based on rain-gauge and radar data. Daily CONUS CP has a slightly stronger relation231

with flash counts (correlation values of 0.89 and 0.87 for negative and positive polarity, respec-232

tively; Fig. 3) than does CAPE alone. We note that including precipitation rate has the potential233

to introduce some dependence on aerosols since rain rate increases with aerosol level (Koren et al.234

2012).235

c. Annual cycle and climatology236

CONUS CP and CG flash counts have strikingly similar annual cycles, both at daily and monthly237

resolution, with peak values in summer and much smaller values in the cool season (Fig. 4).238

The increase in CG occurrence from spring to summer is gradual and followed by a somewhat239

sharper decay after August (Holle et al. 2016). Annual cycles at daily-resolution are computed by240

averaging the 14 values (2003–2016) available for each calendar day with February 29 excluded.241
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The daily resolution annual cycle shows that CONUS CP appears to resolve some sub-monthly242

features that are likely specific to this set of years. The largest discrepancies between the annual243

cycles of CONUS CP and negative CG flash counts (clearest at monthly resolution) occur in July–244

August, when CP values are too low, and in September–October when CP values are too high (Fig.245

4). There is also good agreement between the annual cycles of CONUS CP and positive CG flash246

counts, with a tendency of CP values to be too low in spring (March–May) and too high in summer247

and early fall (June–September).248

The similarity of the annual cycles of CONUS CP and CG flash counts means that some of249

the variance of CG flash counts at daily resolution explained by CP (Fig. 3) is a consequence of250

CP accurately capturing the seasonality of CG flash counts. In fact, the annual cycle of CP at251

daily resolution, a quantity with no year-to-year variation, explains 63% and 52% of the variance252

of negative and positive daily CONUS CG flash counts, respectively. The annual cycle of CP at253

daily resolution explains nearly as much variance of daily negative and positive CONUS CG flash254

counts as do their own annual cycles, which explain 66% and 54%, respectively.255

CP captures the annual cycle of lightning occurrence at the regional level and monthly resolution256

to varying degrees (Fig. 5). Because a single (polarity-dependent) factor is used to scale CP,257

the differing performance of CP in matching the relative magnitude and phasing of the regional258

seasonal cycles provides another indication of the extent to which CAPE and precipitation alone259

are adequate to provide a statistical description of CG flash counts. For the most part, both the260

magnitude of the CG annual cycle and its phasing are well-matched by that of CP in regions east261

of the Rockies. Because the majority of lightning flashes occur in the eastern half of the country,262

the scaling factor is disposed to match the magnitude there. In the Upper Midwest, where the263

ratio of positive to negative CG flashes is relatively large, the CP annual cycle is stronger than264

that of the negative CG flashes and better matches the annual cycle magnitude of the positive CG265
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flashes. CP overestimates negative CG flashes in the Upper Midwest during July–August and266

underestimates them in the Plains. The largest differences in annual cycle magnitude are present267

in the Southwest, Northwest, and West regions, where CP is substantially too low compared to268

both negative and positive CG flash counts. These annual cycle biases indicate that a lightning269

proxy potentially could benefit from taking into account physical factors that are different in these270

regions (e.g., warm cloud depth) and that are not captured by reanalysis precipitation and CAPE.271

Alternatively, regionally-varying, empirical corrections could be applied to CP as is done to the272

output of numerical weather and climate prediction models.273

CP shows the largest phase errors in the Northwest and West. CP in the Northwest peaks in274

May–June, while CG flash counts peak in June–August and have stronger seasonality (greater275

peak to trough differences). In the West, CP shows a bimodal structure, with a peak in August and276

a secondary peak in early spring, while CG flash counts have a unimodal distribution, with a peak277

in July and stronger seasonality. CP tends to match the annual cycle of positive CG flashes more278

poorly than it does negative ones, especially in the Southeast, Northeast and Central regions where279

CP overestimates the peak magnitude.280

The annual spatial distribution of CP is more similar to that of negative CG flashes than that281

of positive CG flashes (Fig. 6). The annual spatial distribution of negative CG flashes is nearly282

indistinguishable from all CG flashes (not shown). Compared to counts of positive CG flashes,283

corresponding CP values are too low in the middle of the CONUS (Oklahoma, Kansas, and Ne-284

braska) and too large along the Southeast coast, and over Florida. Centered pattern correlations285

between the climatological monthly maps of NLDN flash counts and the CP proxy computed for286

the CONUS region east of 105◦W show good agreement for negative polarity flashes throughout287

the year but are relatively poor for positive CG flashes during June–October (Table 1), which are288
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months when CP values tend to be too high in the Southeast, Northeast, and Central regions and289

too low in the Plains region (Fig. 5).290

d. Seasonality in the strength of daily associations291

We compute the correlation between daily CONUS CG flash counts and CP values for each of292

the twelve calendar months separately to examine how the strength of the association between293

daily CP values and flash counts varies through the calendar. By removing the mean of each cal-294

endar month from the daily data, we remove much of the contribution of the annual cycle to the295

correlation of daily values computed in Section 3b, though some months have considerable clima-296

tological mean changes within the month (e.g., August). The correlation between daily CONUS297

CP and CG flash counts by calendar month is very similar for negative, positive, and all polarity298

flashes (Table 2), and shows a clear seasonality with lower values in summer and fall. The median299

correlation between daily CONUS CP and all CG flash counts by calendar month is 0.88 during300

the months of November through May, while it is 0.70 during the months of June through October.301

The normalized daily MSE shows a consistent picture, with larger relative errors in the months302

of June through November (Table 2). The daily normalized MSE is relatively low during the303

months of November through April, with a median of 24% and 36% for negative and positive CG304

flash counts, respectively. However, during the months of May through October, the median daily305

normalized MSE is 66% and 65%, respectively, for negative and positive CG flash counts. Nor-306

malized MSE values greater than one for negative CG flashes in September and October indicate307

that the errors are greater than would result from replacing the daily CP values with the monthly308

average over the period. Higher daily errors during the months of peak lightning occurrence might309

be expected to accumulate and limit the ability of CP to capture year-to-year variations of seasonal310

and annual totals.311
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e. Interannual variability312

We now examine the ability of CP to match year-to-year variations in monthly, six-month, and313

annual values of CG flash counts. At annual resolution, there is no substantial correlation of314

CONUS CP with counts of negative CG flashes (r = 0.09; Fig. 7) or with counts of all CG flashes315

(r = 0.03, not shown). To some extent, this lack of association between annual values of CONUS316

CP and negative CG flashes is unexpected since daily values are well-correlated, both in an overall317

sense that includes seasonality, and when focusing on individual months. Time averaging often318

reduces noise and enhances statistical relations, but, in this case, time averaging serves to high-319

light deficiencies of CP during the warm season. Dewan et al. (2018) also found low correlation320

of annual numbers of total flashes over Bangladesh with CP, but found a statistically significant321

relation with CAPE, which is not present here (not shown). The correlation of annual CONUS CP322

with counts of positive CG flashes is considerably larger (r = 0.8; Fig. 7), although that correla-323

tion drops to 0.52 when the largest annual value (2016) is removed. The large number of positive324

CG flashes recorded in 2016 could be due to the new flash type classification technique that is325

based on the examination of multiple waveform parameters, which was employed within the TLP326

as indicated in Nag et al. (2016).327

The correlation between warm season (May–October) CONUS CP and CG flashes is roughly the328

same as for annual values (r = 0.05 and r = 0.76 for negative and positive polarity, respectively;329

Fig. 7). Annual counts of CG flashes are dominated by warm season values in the sense that warm330

season flashes account for 89% of negative CG flashes and 83% of positive CG flashes during331

the period 2003–2016 (Supplemental Tables S2 and S3) and in the sense that warm season counts332

of CG flashes are highly correlated with annual values (r = 0.97 and r = 0.99, for negative and333

positive flashes, respectively). During the cool season (November–April), CONUS CP shows a334
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fairly good association with negative (r = 0.74; Fig. 7), positive (r = 0.89; Fig. 7) and all (r = 0.79,335

not shown) CG flash counts. The good association of CONUS CP with the number of CG flashes336

of both polarities during the cool season is possible because the correlation between the number of337

negative and positive cool season CONUS CG flashes is 0.69. In contrast, the correlation between338

the number of negative and positive warm season CONUS CG flashes is -0.32.339

The correlations of monthly values of CONUS CP with negative CG flashes (first line of Table340

3) are considerably higher than the annual or warm season correlations, though the correlations for341

months during the warm season (median correlation 0.47) tend to be lower than for months during342

the cool season (median correlation 0.87). Correlations of positive CG flash counts with monthly343

CONUS CP are above 0.85 during six months of the year and fall below 0.5 only in August and344

October (first line of Table 4), with a tendency toward lower correlations during warm season345

months (median correlation 0.65) compared to cool season months (median correlation 0.87). The346

lower correlations during some warm season months is consistent with relatively low correlations347

and poor normalized MSE at daily resolution during warm season months noted earlier (Table 2).348

At the regional level, correlations between monthly CP and negative CG flash counts are over-349

all higher than those at the CONUS level, particularly during warm season months (May through350

October) when 87% of the regional correlations are greater than CONUS ones (Table 3). Lower351

correlation with increasing spatial aggregation is consistent with regionally varying magnitude er-352

rors. Correlations of monthly CP and negative CG flash counts show some indication of relatively353

lower values in warm season months in the Southeast, Northeast, and South regions, which pro-354

duce more than 68% of the annual CONUS number of negative CG flashes (Supplemental Table355

S2). Correlations of monthly CP and positive CG flash counts show some reduced values during356

warm season months in the South and Southeast regions (Table 4) but are otherwise fairly strong,357

except in the Central, Upper Midwest, and Plains regions during some cool season months. De-358
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spite clear deficiencies in the South and Southeast regions during the warm season, which likely359

contribute to poor CONUS performance, the relation between monthly CP and CG flash counts is360

strong in many regions and during many times of the year, demonstrating the strong potential for361

CP as an indicator of monthly tendencies in regional CG flash counts.362

Maps of the correlation between warm and cool season CP and CG flashes show large-scale363

features that are consistent with the analysis at the NOAA region level, as well as fairly high364

correlations at the gridpoint level in many areas (Fig. 8). Correlations of warm season CP with365

negative CG flash counts are mostly positive but very modest in the Southeast, Northeast, and366

parts of the South, consistent with the regional analysis. Correlations between warm season CP367

and negative CG flash counts are weakly negative in an area that includes the borders of Colorado,368

Wyoming, Nebraska, and Kansas where the ratio of intra-cloud lightning to CG flashes is known369

to be large and which is often associated with inverted or complex charge structures (Carey and370

Rutledge 1998; Medici et al. 2017). Misclassification of cloud pulses as CG flashes as well as in-371

correct assignment of first peak polarity have been noted in the Kansas-Nebraska area (Cummins372

and Murphy 2009). Warm season correlations between CP and negative CG flash counts are also373

weakly negative in smaller areas along the West Coast, and around Butte, Montana, and Colum-374

bus, Georgia. Cool season correlations between CP and CG flash counts of both polarities are375

similar and generally higher than warm season ones across the southeastern half of the CONUS.376

Correlations between warm season CP and positive CG flashes are overall higher than for negative377

CG flashes over most of the CONUS, with low correlations mostly limited to Florida and states to378

its immediate north (Fig. 8). Maps of annual correlations (not shown) are similar to those for the379

warm season.380

Warm season normalized MSE exceeds one in many areas for both polarities, indicating errors381

that are larger than the climatological variance, especially west of 105◦W where mean biases are382
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large (Fig. 9). For negative CG flashes, the warm season normalized MSE east of the Rockies is383

mostly less than one except in areas that include Wisconsin and eastern Minnesota, the Gulf Coast,384

and eastern North Carolina. On the other hand, the warm season normalized MSE for positive CG385

flashes is large across the Southeast and Northeast regions, indicating magnitude miscalibration386

since correlations are good there (Fig. 8). The normalized cool season MSE is lower overall387

than the warm season MSE for both polarities, except in the Northwest and on the West Coast.388

Cool season normalized MSE is lower overall for negative CG flashes than for positive ones. Both389

polarities have large normalized MSE over southern Florida in the cool season. Annual normalized390

MSE maps (not shown) are similar to warm season ones.391

4. Summary392

We have compared the product of collocated CAPE and precipitation (denoted CP) taken from393

the North American Regional Reanalysis with counts of negative and positive cloud-to-ground394

(CG) lightning flashes from the National Lightning Detection Network (NLDN) over the con-395

tiguous U.S. (CONUS). Our analysis includes CONUS-wide and regional characteristics on daily,396

monthly, and annual resolution for the period 2003–2016. This analysis extends the findings of397

Romps et al. (2014) who considered one year of CONUS-aggregated daily values from 2011.398

Overall, the association of CP with lightning flashes on the daily, monthly, and seasonal scale399

tends to be stronger during the cool season (November–April) than during the warm season (May–400

October). Interannual correlations between CP and flash counts tend to be stronger for positive401

CG flashes than for negative ones.402

Daily values of CONUS CP are highly correlated with both positive and negative CG flash403

counts, explaining more than 75% of their daily variance (Fig. 3). Some of this association (more404

than 60% of the variance) is a reflection of the strong seasonal cycles of CONUS CP and CG flash405
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counts and their good phase agreement (Fig. 4). However, daily variations of CONUS CP and CG406

flash counts with respect to their monthly climatologies are still strongly related, but with stronger407

associations in the cool season (November–April) than in the warm season (May–October) when408

most lightning occurs (Table 2). The normalized (relative to climatological variance) daily mean-409

squared error (MSE) of CONUS values is also larger in the warm season, and this lower accuracy410

translates into lower interannual correlations (Fig. 7) and higher normalized MSE for monthly411

totals in the warm season (Table 3), especially for negative polarity flashes, which are the vast412

majority of CG flashes. The low correlation in summer months might indicate that CP is better413

related to storm occurrence than to the total number of CG flashes within a storm. This lack of414

association during the warm season when the majority of lightning occurs results in there being415

essentially no correlation between the annual values of CP and corresponding numbers of either416

negative or total CG lightning flashes. There is, however, a good correlation between warm season417

and annual counts of positive CG flashes with CP (Fig. 7). Cool season CP correlates well with418

both counts of positive and negative CG flashes.419

We find that the ratio of CP to CG flash counts varies considerably on a regional basis, with the420

greatest difference found in the arid Southwest, where the ratio of CG flashes to CP is substantially421

higher than in between regions east of the Rockies (Fig. 2). The ratio of CG flashes to CP is lowest422

along the West Coast, where there are fewer cloud condensation nuclei and where maritime air423

masses can penetrate. At the level of NOAA climate regions, despite some errors in magnitude,424

CP matches the annual cycle in all regions fairly well except the Northwest and West (Fig. 5).425

Correlations of annual CP with CG flash counts at the regional level are generally higher for426

positive than for negative CG flash counts ((Tables 3 and 4). Regional correlations of annual CP427

and negative CG flash counts are especially low in the South and Northeast, where more than 35%428

of all negative CONUS CG flashes occur. The relatively weak association between CP and counts429
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of negative CG flashes in these areas during the warm season explains the lack of correlation430

between annual CONUS CP and negative CG flash counts. In these regions, correlations between431

cool season CP and CG flash counts are generally stronger than for warm season values. This432

finding is roughly consistent with those of Dewan et al. (2018) who found higher correlations433

between CP and total lightning flash count for the pre-monsoon season than for the monsoon434

season.435

Maps of the correlation between annual values of CP and CG flash counts show positive values436

over most of the CONUS, with some spatially limited exceptions (Fig. 8). In general, correlations437

with CP are stronger for positive CG flash counts and stronger during the cool season for both438

polarities. Despite the positive correlations at the gridpoint level, interannual variability of CP439

values are not well-calibrated with CG flash counts. Maps of normalized MSE show relatively440

low error levels for both polarities during the cool season for most of the CONUS except for large441

errors on the West Coast, the Northwest, and southern Florida (Fig. 9). Normalized MSE is small442

during the warm season for positive CG flash counts in a swath that extends from Texas northeast443

to the Great Lakes.444

5. Discussion445

The suitability of CP for S2S forecasting applications cannot be concluded from this study.446

However, assessment with subseasonal reforecast data has been encouraging (Tippett and Koshak447

2018). In principle, the utility of CP for S2S forecasting is at least limited by its performance with448

reanalysis data and the extent that its constituents can be forecast. The high correlations between449

CP and CG flash counts across large portions of the U.S. show that this simple proxy captures450

considerable variability. Conversely, we have also identified regions and times of the year when451

CP values are not strongly correlated with CG flash counts, and this weakness suggests the need452
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for improvements in the proxy. The degree to which CP can be predicted in advance is unknown453

beyond submonthly lead times. There are indications that the CP ingredients, precipitation and454

CAPE, can be predicted with some skill. U.S. precipitation is already forecast with current forecast455

systems with some skill at subseasonal (DelSole et al. 2017) and seasonal (Becker et al. 2014)456

time-scales. However, skill tends to be lowest in the warm season. Seasonal values of CAPE have457

been demonstrated to be predictable as well (Jung and Kirtman 2016). On the other hand, even458

in many locations where correlations between CP and CG flash counts are high, the MSE is also459

relatively high, indicating that the CP proxy is not calibrated to match CG flash counts. In these460

cases, there is the potential to correct CP values on a regional basis to match CG flash counts.461

Alternatively, this lack of calibration can also be interpreted as indicating that the proxy can be462

improved with the addition of other factors that are important for characterizing lightning activity,463

though perhaps at the risk of losing its attractive simplicity.464

The 14 years of data used in this study are not adequate to answer fully the question of whether465

CP is useful proxy for long-term climate applications. Over the period of study, the annual number466

of CONUS CG flashes varied from a high of 2.7×107 flashes in 2004 to a low of 1.8×107 flashes467

in 2012, a range of about 35% of the annual average of 2.3×107 flashes. However, this variation468

in the annual number CONUS CG flashes was not well captured by the CP proxy. This poor469

performance in describing interannual variability of CONUS CG flash counts does not necessarily470

mean that this approach is poorly suited to climate change applications but does raise concerns471

about the applicability of the proxy to climate change applications.472
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TABLE 1. Centered pattern correlation between climatological CP and NLDN CG flash counts east of 105◦W.

Polarity J F M A M J J A S O N D

Total 0.89 0.90 0.95 0.96 0.94 0.88 0.85 0.86 0.80 0.78 0.91 0.92

Negative 0.88 0.90 0.95 0.96 0.94 0.87 0.84 0.85 0.80 0.78 0.90 0.91

Positive 0.89 0.87 0.92 0.95 0.88 0.68 0.51 0.67 0.69 0.75 0.90 0.91
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TABLE 2. Correlation and normalized MSE of daily CONUS CP and NLDN values pooled by month.

Correlation

Polarity J F M A M J J A S O N D

All 0.87 0.90 0.89 0.90 0.86 0.74 0.69 0.68 0.70 0.71 0.80 0.88

Negative 0.87 0.90 0.89 0.89 0.85 0.73 0.67 0.66 0.69 0.70 0.79 0.87

Positive 0.88 0.90 0.87 0.89 0.86 0.70 0.66 0.68 0.73 0.72 0.83 0.90

Normalized MSE

Polarity J F M A M J J A S O N D

All 0.24 0.21 0.22 0.21 0.37 0.60 0.62 0.63 1.08 0.99 0.66 0.23

Negative 0.25 0.21 0.23 0.23 0.40 0.61 0.65 0.66 1.11 1.03 0.74 0.29

Positive 0.40 0.39 0.33 0.27 0.29 0.67 0.64 0.64 0.77 0.66 0.32 0.42
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TABLE 3. Correlation of monthly averages of negative NLDN flash counts and CP. Low-skill values (less than

0.5) are indicated in bold. Correlation of annual average are provided in the final column.

677

678

Region J F M A M J J A S O N D Annual

CONUS 0.85 0.90 0.88 0.84 0.51 0.66 0.36 0.34 0.46 0.81 0.84 0.96 -0.09

South 0.74 0.87 0.76 0.76 0.66 0.32 0.41 0.34 0.63 0.65 0.63 0.87 0.02

Southeast 0.90 0.91 0.91 0.82 0.87 0.85 0.76 0.45 0.74 0.88 0.95 0.95 0.67

Northeast 0.67 0.94 0.91 0.88 0.72 0.83 0.65 0.52 0.62 0.75 0.87 0.91 0.16

Central 0.48 0.42 0.91 0.20 0.83 0.85 0.88 0.56 0.76 0.93 0.80 0.38 0.62

Upper Midwest 0.50 0.71 0.95 0.79 0.63 0.77 0.75 0.72 0.65 0.92 0.74 0.61 0.56

Plains 0.11 0.88 0.94 0.91 0.63 0.61 0.43 0.74 0.85 0.59 0.60 0.06 0.11

Southwest 0.65 0.75 0.90 0.90 0.90 0.83 0.60 0.60 0.59 0.93 0.79 0.35 0.74

Northwest 0.40 0.32 0.29 0.61 0.72 0.90 0.70 0.94 0.97 0.43 0.36 0.71 0.60

West 0.84 0.78 0.27 0.61 0.80 0.81 0.75 0.92 0.85 0.86 0.27 0.43 0.64
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TABLE 4. Correlation of monthly averages of positive NLDN flash counts and CP. Low-skill values (less than

0.5) are indicated in bold. Correlation of annual average are provided in the final column.

679

680

Region J F M A M J J A S O N D annual

CONUS 0.86 0.96 0.86 0.85 0.66 0.64 0.72 0.48 0.80 0.41 0.87 0.97 0.80

South 0.59 0.90 0.77 0.75 0.83 0.49 0.41 0.22 0.70 0.41 0.63 0.96 0.43

Southeast 0.93 0.92 0.84 0.82 0.83 0.50 0.56 0.41 0.59 0.56 0.90 0.93 0.67

Northeast 0.80 0.96 0.92 0.96 0.64 0.93 0.80 0.66 0.82 0.71 0.97 0.98 0.87

Central 0.61 0.31 0.88 0.25 0.89 0.92 0.88 0.81 0.98 0.88 0.77 0.40 0.89

Upper Midwest 0.32 0.79 0.82 0.95 0.91 0.92 0.81 0.72 0.90 0.90 0.74 0.49 0.81

Plains 0.25 0.95 0.92 0.96 0.84 0.79 0.88 0.80 0.90 0.40 0.67 0.17 0.80

Southwest 0.76 0.79 0.96 0.92 0.84 0.64 0.50 0.82 0.50 0.91 0.79 0.15 0.59

Northwest 0.88 0.57 0.71 0.60 0.59 0.90 0.83 0.93 0.97 0.73 0.65 0.88 0.67

West 0.86 0.81 0.47 0.62 0.66 0.94 0.88 0.86 0.84 0.89 0.58 0.51 0.64
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FIG. 2. Ratio of the number of negative polarity (left) and positive polarity (right) NLDN flash counts to CP.
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FIG. 6. Annual averages of negative and positive polarity lightning flashes and the corresponding maps of CP.
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FIG. 9. Normalized (relative to climatological variance) MSE of the difference of CP with negative (top row)
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Table S1. States in NOAA climate regions.

South TX, OK, LA, AR, KS, MS.

Southeast FL, AL, GA, SC, NC, VA

Northeast MD, DE, PA, NJ, NY, CT, RI, VT, MA, NH, ME.

Central TN, MO, IL, IN, OH, KY, WV.

Upper Midwest IA, MN, WI, MI.

Plains WY, NE, MT, ND, SD.

Southwest AZ, NM, UT, CO.

Northwest OR, ID, WA.

West CA, NV.
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Table S2. Percent of negative NLDN CG flashes occurring in each NOAA region and month 2003–2016.

Values of 0.00 indicate less than 0.01%.

734

735

Region J F M A M J J A S O N D annual

South 0.10 0.16 0.48 0.89 1.63 3.69 4.88 3.71 0.98 0.22 0.07 0.10 16.92

Southeast 0.26 0.50 1.32 3.44 5.99 6.67 5.50 5.48 2.15 1.33 0.56 0.37 33.58

Northeast 0.08 0.12 0.45 1.26 2.71 4.07 4.53 3.52 1.14 0.42 0.15 0.07 18.52

Central 0.01 0.01 0.08 0.27 0.79 1.60 1.80 1.53 0.66 0.19 0.04 0.00 6.98

Upper Midwest 0.00 0.00 0.05 0.22 1.01 2.39 2.39 2.03 0.66 0.13 0.01 0.00 8.89

Plains 0.00 0.01 0.02 0.08 0.44 0.90 1.16 0.85 0.23 0.04 0.01 0.00 3.75

Southwest 0.00 0.01 0.05 0.14 0.55 1.08 3.19 3.05 1.07 0.36 0.03 0.01 9.56

Northwest 0.00 0.00 0.00 0.02 0.09 0.15 0.19 0.20 0.06 0.01 0.00 0.00 0.72

West 0.00 0.00 0.01 0.02 0.06 0.09 0.35 0.33 0.15 0.06 0.00 0.00 1.09

CONUS 0.45 0.82 2.46 6.34 13.29 20.64 23.98 20.71 7.11 2.77 0.88 0.55 100.00
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Table S3. Percent of positive NLDN CG flashes occurring in each NOAA region and month 2003–2016.

Values of 0.00 indicate less than 0.01%.

736

737

Region J F M A M J J A S O N D annual

South 0.22 0.35 0.72 1.11 1.21 2.06 2.56 2.04 0.75 0.22 0.15 0.27 11.66

Southeast 0.50 0.75 1.94 4.32 6.96 6.02 4.43 4.47 2.12 1.59 0.85 0.78 34.73

Northeast 0.16 0.23 0.71 1.81 2.60 3.27 2.99 2.30 1.12 0.55 0.25 0.19 16.20

Central 0.02 0.02 0.19 0.58 1.48 2.65 2.96 2.18 1.15 0.30 0.08 0.01 11.62

Upper Midwest 0.00 0.01 0.13 0.41 1.82 4.09 4.00 2.86 0.93 0.21 0.02 0.01 14.50

Plains 0.01 0.02 0.04 0.13 0.34 0.48 0.56 0.40 0.18 0.06 0.02 0.01 2.24

Southwest 0.01 0.02 0.06 0.19 0.61 1.15 2.13 1.83 0.78 0.39 0.06 0.01 7.24

Northwest 0.00 0.00 0.01 0.04 0.14 0.20 0.20 0.20 0.08 0.03 0.01 0.01 0.92

West 0.01 0.01 0.02 0.04 0.08 0.09 0.23 0.20 0.11 0.09 0.01 0.01 0.89

CONUS 0.93 1.41 3.82 8.64 15.25 20.01 20.05 16.48 7.23 3.44 1.45 1.29 100.00
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